Weather Modeling at Scale: A Case Study
This case study examines the implementation and optimization of a large-scale weather modeling application on EuroHPC systems.
Project Overview
Application Profile
- Model: WRF (Weather Research and Forecasting)
- Scale: Continental Europe, 1km resolution
- Time Range: 72-hour forecast
- Update Frequency: Every 6 hours
Technical Requirements
- 2048 compute nodes
- 16TB total memory
- 4PB storage capacity
- Real-time processing constraints
Implementation Strategy
1. Domain Decomposition
# Domain partitioning example
def partition_domain(nx, ny, nz, num_procs):
"""Optimal 3D domain decomposition"""
from math import ceil
# Calculate optimal distribution
px = ceil(pow(num_procs, 1/3))
py = ceil(sqrt(num_procs/px))
pz = ceil(num_procs/(px*py))
return (px, py, pz)
2. I/O Optimization
! Parallel I/O implementation
SUBROUTINE write_output(field, timestep)
USE mpi
USE parallel_io_mod
REAL, DIMENSION(:,:,:) :: field
INTEGER :: timestep
! Use MPI-IO with collective writes
CALL MPI_File_write_at_all(fh, offset, field, count, &
MPI_REAL, status, ierr)
END SUBROUTINE
Performance Analysis
Strong Scaling Results
graph LR
A[Base] -->|2x nodes| B[3.8x speedup]
B -->|4x nodes| C[7.2x speedup]
C -->|8x nodes| D[13.5x speedup]
Resource Utilization
Component | Usage | Bottleneck |
---|---|---|
CPU | 85-95% | No |
Memory | 75-80% | No |
Network | 60-70% | Yes |
I/O | 40-50% | Partial |
Optimization Techniques
1. Communication Optimization
// Overlap computation with communication
#pragma omp parallel sections
{
#pragma omp section
{
// Compute internal domain
compute_internal(data);
}
#pragma omp section
{
// Exchange boundaries
exchange_boundaries(data);
}
}
2. Memory Management
// Custom memory allocator for better locality
template<typename T>
class DomainAllocator {
T* allocate(size_t n) {
// Align to page boundaries
void* ptr = nullptr;
posix_memalign(&ptr, 4096, n * sizeof(T));
return static_cast<T*>(ptr);
}
};
Challenges and Solutions
Load Imbalance
Problem: Uneven workload distribution Solution: Dynamic load balancing using weighted partitioning
I/O Bottlenecks
Problem: Slow file I/O with large datasets Solution: Implemented parallel I/O with MPI-IO collective operations
Results and Impact
Performance Improvements
- 85% reduction in time-to-solution
- 3.2x improvement in I/O performance
- 95% parallel efficiency at 2048 nodes
Scientific Impact
- Increased forecast resolution from 2km to 1km
- Extended forecast range by 24 hours
- Improved prediction accuracy by 23%
Lessons Learned
- Communication Patterns
- Use of non-blocking collectives
- Topology-aware process placement
-
Custom communication schedules
-
I/O Strategies
- Parallel netCDF with collective buffering
- Two-phase I/O implementation
-
Asynchronous I/O operations
-
Resource Management
- Dynamic load balancing
- Memory-aware task scheduling
- Network congestion management
Future Improvements
-
GPU Acceleration
-
AI Integration
- ML-based parameterization
- Neural network acceleration
- Hybrid modeling approach
References
- WRF Model Documentation
- performance optimization guide
- Parallel I/O optimization guide
Related Articles
- I/O Performance Tuning
- MPI optimization guide
- GPU computing guide