Protein Folding Simulation at Scale
A deep dive into optimizing GROMACS for large-scale molecular dynamics simulations of the SARS-CoV-2 spike protein.
Case Study: Protein Folding Simulation at Scale
In this case study, we'll explore how we optimized a large-scale protein folding simulation for the SARS-CoV-2 spike protein using GROMACS on a multi-node GPU cluster.
Project Overview
Challenge: Simulate the folding dynamics of the SARS-CoV-2 spike protein (2.2M atoms) for 1µs.
Hardware Available: - 8 nodes with 4× NVIDIA A100 GPUs each - 100 Gb/s InfiniBand interconnect - 1 TB RAM per node
Initial Setup and Challenges
When we first attempted this simulation, we encountered several challenges:
-
Memory Bottleneck
-
Poor GPU Utilization
Solution Strategy
1. System Preparation
We optimized the system setup using careful periodic boundary conditions:
# Using MDAnalysis to set up the system
import MDAnalysis as mda
from MDAnalysis.analysis import distances
# Load structure
u = mda.Universe('spike.pdb')
# Calculate optimal box size
dims = distances.box_dimensions(u.atoms)
box_margin = 1.5 # nm
new_box = dims + 2 * box_margin
print(f"Optimal box dimensions: {new_box} nm")
2. GPU Task Distribution
We implemented a hybrid parallelization strategy:
# GROMACS run command with optimized parameters
gmx mdrun -deffnm spike \
-nb gpu \
-pme gpu \
-bonded gpu \
-update gpu \
-ntomp 8 \
-npme 2 \
-nstlist 100 \
-dlb yes
3. Performance Monitoring
We developed a custom monitoring script:
import matplotlib.pyplot as plt
import numpy as np
def parse_log(logfile):
performance = []
with open(logfile, 'r') as f:
for line in f:
if 'Performance' in line:
# Extract ns/day
perf = float(line.split()[-2])
performance.append(perf)
return performance
# Plot performance over time
performance = parse_log('md.log')
plt.plot(performance)
plt.xlabel('Time (steps)')
plt.ylabel('Performance (ns/day)')
plt.show()
Results
Performance Improvements
Optimization Step | Performance (ns/day) | GPU Utilization |
---|---|---|
Initial Setup | 15.2 | 25% |
Memory Optimized | 22.7 | 45% |
GPU Tasks Tuned | 42.3 | 85% |
Final Setup | 48.9 | 92% |
Scaling Analysis
# Scaling data visualization
nodes = [1, 2, 4, 8]
speedup = [1, 1.85, 3.42, 6.1]
plt.plot(nodes, speedup, 'bo-')
plt.plot(nodes, nodes, 'k--', label='Linear')
plt.xlabel('Number of Nodes')
plt.ylabel('Speedup')
plt.legend()
plt.grid(True)
Key Learnings
- Memory Management
- Use PME decomposition carefully
- Monitor memory usage per rank
-
Adjust box size based on protein dimensions
-
GPU Optimization
- Balance PME workload
- Tune update groups
-
Optimize neighbor searching
-
Network Considerations
- Use GPUDirect RDMA
- Optimize domain decomposition
- Monitor communication patterns
Code Snippets
Production Run Script
#!/bin/bash
#SBATCH --job-name=spike_fold
#SBATCH --nodes=8
#SBATCH --gpus-per-node=4
#SBATCH --time=48:00:00
module load GROMACS/2023.2-CUDA
# Environment setup
export GMX_FORCE_UPDATE_DEFAULT_GPU=true
export CUDA_VISIBLE_DEVICES=0,1,2,3
# Run simulation
mpirun -np 32 gmx_mpi mdrun \
-deffnm spike \
-maxh 47.5 \
-nb gpu \
-pme gpu \
-bonded gpu \
-update gpu \
-ntomp 8 \
-nstlist 100 \
-dlb yes
Conclusions
Through careful optimization and monitoring, we achieved: - 3.2× performance improvement - 92% GPU utilization - 6.1× scaling efficiency on 8 nodes
Resources
- GROMACS Performance Analysis
- GPU Optimization Guide
- Raw Data and Scripts
Discussion
Share your experiences with large-scale protein simulations or ask questions below!